Core Mathematics C1 Paper C

1. Solve the equation

$$
\begin{equation*}
9^{x}=3^{x+2} . \tag{3}
\end{equation*}
$$

2. The straight line l has the equation $x-5 y=7$.

The straight line m is perpendicular to l and passes through the point $(-4,1)$.
Find an equation for m in the form $y=m x+c$.
3.

The diagram shows the rectangles $A B C D$ and $E F G H$ which are similar.
Given that $A B=(3-\sqrt{5}) \mathrm{cm}, A D=\sqrt{5} \mathrm{~cm}$ and $E F=(1+\sqrt{5}) \mathrm{cm}$, find the length $E H$ in cm , giving your answer in the form $a+b \sqrt{5}$ where a and b are integers.
4. (i) Sketch on the same diagram the curves $y=x^{2}-4 x$ and $y=-\frac{1}{x}$.
(ii) State, with a reason, the number of real solutions to the equation

$$
\begin{equation*}
x^{2}-4 x+\frac{1}{x}=0 . \tag{2}
\end{equation*}
$$

5. (i) Solve the inequality

$$
\begin{equation*}
x^{2}+3 x>10 \tag{3}
\end{equation*}
$$

(ii) Find the set of values of x which satisfy both of the following inequalities:

$$
\begin{align*}
& 3 x-2<x+3 \\
& x^{2}+3 x>10 \tag{3}
\end{align*}
$$

6.

$$
\mathrm{f}(x)=4 x^{2}+12 x+9
$$

(i) Determine the number of real roots that exist for the equation $\mathrm{f}(x)=0$.
(ii) Solve the equation $\mathrm{f}(x)=8$, giving your answers in the form $a+b \sqrt{2}$ where a and b are rational.
7. The circle C has centre $(-1,6)$ and radius $2 \sqrt{5}$.
(i) Find an equation for C.

The line $y=3 x-1$ intersects C at the points A and B.
(ii) Find the x-coordinates of A and B.
(iii) Show that $A B=2 \sqrt{10}$.
8. $\mathrm{f}(x)=2-x+3 x^{\frac{2}{3}}, x>0$.
(i) Find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$.
(ii) Find the coordinates of the turning point of the curve $y=\mathrm{f}(x)$.
(iii) Determine whether the turning point is a maximum or minimum point.
9. (i) Find an equation for the tangent to the curve $y=x^{2}+2$ at the point $(1,3)$ in the form $y=m x+c$.
(ii) Express $x^{2}-6 x+11$ in the form $(x+a)^{2}+b$ where a and b are integers.
(iii) Describe fully the transformation that maps the graph of $y=x^{2}+2$ onto the graph of $y=x^{2}-6 x+11$.
(iv) Use your answers to parts (i) and (iii) to deduce an equation for the tangent to the curve $y=x^{2}-6 x+11$ at the point with x-coordinate 4 .
10. The curve C has the equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=(x+2)^{3} .
$$

(i) Sketch the curve C, showing the coordinates of any points of intersection with the coordinate axes.
(ii) Find $\mathrm{f}^{\prime}(x)$.

The straight line l is the tangent to C at the point $P(-1,1)$.
(iii) Find an equation for l.

The straight line m is parallel to l and is also a tangent to C.
(iv) Show that m has the equation $y=3 x+8$.

